Chemical Biology News

  • Design, synthesis and structure-activity relationships of substituted oxazole-benzamide antibacterial inhibitors of FtsZ

    Stokes NR, Baker N, Bennett JM, Chauhan PK, Collins I, Davies DT, Gavade M, Kumar D, Lancett P, Macdonald R, Macleod L, Mahajan A, Mitchell JP, Nayal N, Nayal YN, Pitt GR, Singh M, Yadav A, Srivastava A, Czaplewski LG, Haydon DJ.

    Bioorg Med Chem Lett. 2014 Jan 1;24(1):353-9. doi: 10.1016/j.bmcl.2013.11.002. Epub 2013 Nov 13

    The design, synthesis and structure-activity relationships of a series of oxazole-benzamide inhibitors of the essential bacterial cell division protein FtsZ are described. Compounds had potent anti-staphylococcal activity and inhibited the cytokinesis of the clinically-significant bacterial pathogen Staphylococcus aureus. Selected analogues possessing a 5-halo oxazole also inhibited a strain of S. aureus harbouring the glycine-to-alanine amino acid substitution at residue 196 of FtsZ which conferred resistance to previously reported inhibitors in the series. Substitutions to the pseudo-benzylic carbon of the scaffold improved the pharmacokinetic properties by increasing metabolic stability and provided a mechanism for creating pro-drugs. Combining multiple substitutions based on the findings reported in this study has provided small-molecule inhibitors of FtsZ with enhanced in vitro and in vivo antibacterial efficacy.

    0 Comments

Chemical Biology Ventures News

Welcome to Chemical Biology Ventures News

CBV updates & relevant chemical biology papers, news & comments will be posted

You are viewing the text version of this site.

To view the full version please install the Adobe Flash Player and ensure your web browser has JavaScript enabled.

Need help? check the requirements page.


Get Flash Player